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ABSTRACT

This paper introduces an adaptive dual-scale denoising approach for low-
dimensional diffusion models, addressing the challenge of balancing global struc-
ture and local detail in generated samples. While diffusion models have shown re-
markable success in high-dimensional spaces, their application to low-dimensional
data remains crucial for understanding fundamental model behaviors and address-
ing real-world applications with inherently low-dimensional data. However, in
these spaces, traditional models often struggle to simultaneously capture both
macro-level patterns and fine-grained features, leading to suboptimal sample qual-
ity. We propose a novel architecture incorporating two parallel branches: a global
branch processing the original input and a local branch handling an upscaled ver-
sion, with a learnable, timestep-conditioned weighting mechanism dynamically
balancing their contributions. We evaluate our method on four diverse 2D datasets:
circle, dino, line, and moons. Our results demonstrate significant improvements
in sample quality, with KL divergence reductions of up to 12.8% compared to
the baseline model. The adaptive weighting successfully adjusts the focus be-
tween global and local features across different datasets and denoising stages,
as evidenced by our weight evolution analysis. This work not only enhances
low-dimensional diffusion models but also provides insights that could inform
improvements in higher-dimensional domains, opening new avenues for advancing
generative modeling across various applications.

1 INTRODUCTION

Diffusion models have emerged as a powerful class of generative models, achieving state-of-the-art
results in various domains such as image synthesis, audio generation, and molecular design Yang
et al. (2023). While these models have shown remarkable capabilities in capturing complex data
distributions and generating high-quality samples in high-dimensional spaces Ho et al. (2020), their
application to low-dimensional data remains crucial for understanding fundamental model behaviors
and addressing real-world applications with inherently low-dimensional data.

The challenge in applying diffusion models to low-dimensional spaces lies in simultaneously cap-
turing both the global structure and local details of the data distribution. In these spaces, each
dimension carries significant information about the overall structure, making the balance between
global coherence and local nuance particularly crucial. Traditional diffusion models often struggle to
achieve this balance, resulting in generated samples that either lack coherent global structure or miss
important local details.

To address this challenge, we propose an adaptive dual-scale denoising approach for low-dimensional
diffusion models. Our method introduces a novel architecture that processes the input at two scales:
a global scale capturing overall structure, and a local scale focusing on fine-grained details. The
key innovation lies in our learnable, timestep-conditioned weighting mechanism that dynamically
balances the contributions of these two scales throughout the denoising process.

We evaluate our approach on four diverse 2D datasets: circle, dino, line, and moons. Our experiments
demonstrate significant improvements in sample quality, with reductions in KL divergence of up to
12.8
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Our main contributions are:

• A novel adaptive dual-scale denoising architecture for low-dimensional diffusion models
that dynamically balances global structure and local details.

• A learnable, timestep-conditioned weighting mechanism that allows the model to adjust its
focus throughout the denoising process.

• Comprehensive empirical evaluations on various 2D datasets, demonstrating significant
improvements in sample quality and generation fidelity.

• Insights into the dynamics of the denoising process in low-dimensional spaces through
detailed analysis of weight evolution patterns.

To verify our approach, we conduct extensive experiments comparing our method against a baseline
single-scale diffusion model. We evaluate performance using KL divergence, visual inspection of
generated samples, and analysis of computational efficiency. Our results show consistent improve-
ments in sample quality across all datasets, with the most substantial improvement observed in the
complex dino dataset.

This work not only advances the understanding and performance of diffusion models in low-
dimensional spaces but also opens up new avenues for improving these models in higher-dimensional
domains. Future work could explore extending our adaptive dual-scale approach to more complex,
higher-dimensional data, potentially leading to improvements in areas such as image synthesis, 3D
shape generation, or modeling molecular structures for drug discovery.

Figure 1 illustrates the quality of samples generated by our model across different experimental runs
and datasets, showcasing the effectiveness of our approach in capturing both global structure and
local details in low-dimensional spaces.

2 RELATED WORK

Our work on adaptive dual-scale denoising for low-dimensional diffusion models builds upon and
extends several key areas of research in generative modeling and multi-scale approaches. This section
compares and contrasts our approach with relevant academic siblings, highlighting the unique aspects
of our method.

2.1 MULTI-SCALE APPROACHES IN DIFFUSION MODELS

Multi-scale approaches have been explored in diffusion models to improve sample quality and
generation efficiency. Karras et al. (2022a) proposed a multi-scale architecture for diffusion models,
demonstrating improvements in both sample quality and inference speed. Their Elucidating Diffusion
Models (EDM) use a fixed hierarchy of scales, in contrast to our adaptive approach. While EDM
focuses on high-dimensional image generation, our method is specifically tailored for low-dimensional
spaces, where the balance between global and local features is particularly crucial.

Similarly, Ho et al. (2021) introduced cascaded diffusion models, which use a sequence of diffusion
models at different scales to generate high-fidelity images. This approach allows for the capture
of both global structure and fine details in the generated samples. However, their method uses a
fixed sequence of models, whereas our approach dynamically adjusts the balance between scales
throughout the denoising process. Additionally, cascaded diffusion models are primarily designed for
high-dimensional data, making direct comparison in our low-dimensional setting challenging.

Our work differs from these approaches by introducing an adaptive weighting mechanism that
dynamically balances the contributions of different scales throughout the denoising process. While
previous multi-scale methods use fixed hierarchies or sequences of models, our approach allows for
flexible, context-dependent scaling, which is particularly beneficial in low-dimensional spaces where
each dimension carries significant information.
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Figure 1: Generated samples from our adaptive dual-scale diffusion model across different runs and
datasets. Each row represents a different experimental run, while columns show results for circle,
dino, line, and moons datasets.

2.2 ADAPTIVE MECHANISMS IN GENERATIVE MODELS

Adaptive mechanisms have been explored in various contexts within generative modeling. The
Time-dependent Multihead Self Attention (TMSA) mechanism introduced in DiffiT Hatamizadeh
et al. (2023) demonstrates the potential of adaptive, time-dependent processing in diffusion models.
While conceptually similar in its time-dependent nature, our approach differs in its specific focus
on balancing multi-scale features in low-dimensional spaces, rather than attention mechanisms in
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high-dimensional data. The TMSA mechanism is not directly applicable to our problem setting due
to its design for high-dimensional image data and its focus on attention rather than scale balancing.

Bai et al. (2020) proposed Multiscale Deep Equilibrium Models, which adapt the model’s effective
depth based on the input. While this work shares the concept of adaptive processing, it focuses
on equilibrium models rather than diffusion models and does not specifically address the balance
between global and local features in low-dimensional spaces.

Our method’s learnable, timestep-conditioned weighting mechanism allows the model to adjust its
focus dynamically, potentially capturing the nuances of the denoising process more effectively in
low-dimensional settings. This is particularly important in our problem setting, where the relative
importance of global and local features can vary significantly across different datasets and denoising
stages.

2.3 LOW-DIMENSIONAL DIFFUSION MODELS

While much of the research on diffusion models has focused on high-dimensional data such as images,
there is growing interest in applying these models to low-dimensional spaces. TabDDPM Kotelnikov
et al. (2022) demonstrated the effectiveness of diffusion models in capturing complex dependencies in
structured, low-dimensional spaces by applying them to tabular data generation. However, TabDDPM
does not specifically address the challenge of balancing global structure and local details, which is
the primary focus of our work.

Our approach extends this line of research by introducing an adaptive dual-scale method specifically
designed to improve the fidelity and quality of generated samples in low-dimensional spaces. Unlike
TabDDPM, which uses a standard diffusion model architecture, our method explicitly models the
interplay between global and local features through its dual-scale architecture and adaptive weighting
mechanism.

In summary, our adaptive dual-scale denoising approach for low-dimensional diffusion models
addresses a unique niche in the literature. While it builds upon foundations laid by previous work in
multi-scale and adaptive processing, it is specifically tailored to the challenges of low-dimensional
spaces. Our method’s dynamic balancing of global and local features sets it apart from fixed multi-
scale approaches and makes it particularly suited for capturing complex low-dimensional distributions.
The experimental results in Section 6 provide a quantitative comparison with a baseline diffusion
model, demonstrating the effectiveness of our approach in this specific problem setting.

3 BACKGROUND

Diffusion models have emerged as a powerful class of generative models, achieving remarkable
success in various domains of machine learning Yang et al. (2023). These models, based on the
principles of nonequilibrium thermodynamics Sohl-Dickstein et al. (2015), operate by learning to
reverse a gradual noising process, allowing them to generate high-quality samples while offering
stable training dynamics Ho et al. (2020).

The diffusion process consists of two main phases:

1. Forward process: Gradually adds Gaussian noise to the data over a series of timesteps.
2. Reverse process: A neural network learns to predict and remove this noise, effectively

generating samples from random noise.

Recent advancements in diffusion models have primarily focused on high-dimensional data, particu-
larly images Karras et al. (2022b). However, the study of diffusion models in low-dimensional spaces
remains crucial for:

• Providing tractable analysis of model behavior, informing improvements in higher-
dimensional settings.

• Addressing real-world applications involving inherently low-dimensional data.
• Developing novel architectural designs and training strategies that may generalize to higher

dimensions.
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3.1 PROBLEM SETTING

We focus on applying diffusion models to 2D datasets. Let X ⊂ R2 be our data space, and pdata(x)
be the true data distribution over X . Our goal is to learn a generative model that samples from a
distribution pmodel(x) closely approximating pdata(x).

The diffusion process is defined over T timesteps. Let x0 ∼ pdata(x) be a sample from the data
distribution, and x1, . . . ,xT be the sequence of increasingly noisy versions of x0. The forward
process is defined as:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where βt is the noise schedule.

The reverse process, parameterized by a neural network ϵθ, is defined as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

In low-dimensional spaces, each dimension carries significant information about the overall structure
of the data. This presents a unique challenge: the model must simultaneously capture both the global
structure and local details of the data distribution. Traditional diffusion models often struggle to
achieve this balance in low dimensions, motivating our proposed adaptive dual-scale approach.

Our approach is based on two key assumptions:

1. The importance of global and local features varies across different datasets and at different
stages of the denoising process.

2. A learnable, timestep-conditioned weighting mechanism can effectively balance the contri-
butions of global and local features during denoising.

These assumptions form the basis of our adaptive dual-scale denoising architecture, which we will
describe in detail in the following section.

4 METHOD

Our adaptive dual-scale denoising approach addresses the challenge of balancing global structure
and local details in low-dimensional diffusion models. Building upon the formalism introduced in
Section 3, we present a novel architecture that dynamically adjusts its focus between global and local
features throughout the denoising process.

4.1 DUAL-SCALE ARCHITECTURE

The core of our method is a dual-scale architecture that processes the input at two different scales
simultaneously:

1. Global Scale: This branch processes the original input xt ∈ X ⊂ R2, capturing the overall
structure of the data.

2. Local Scale: This branch processes an upscaled version of the input xup
t ∈ R4, focusing on

fine-grained details.

Both branches use similar network architectures, but with different input dimensions:

ϵglobal
θ (xt, t) = MLPglobal(xt, t) (3)

ϵlocal
θ (xup

t , t) = MLPlocal(x
up
t , t) (4)

where MLP denotes a multi-layer perceptron with sinusoidal embeddings for both input and time,
similar to the architecture used in the original DDPM Ho et al. (2020). The upscaling operation
xup
t = Upscale(xt) is implemented as a learnable linear transformation:
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xup
t = Wxt + b (5)

where W ∈ R4×2 and b ∈ R4 are learnable parameters.

4.2 ADAPTIVE WEIGHTING MECHANISM

To dynamically balance the contributions of the global and local branches, we introduce a learnable,
timestep-conditioned weighting mechanism:

w(t) = Softmax(MLPw(t)) (6)

where w(t) ∈ R2 represents the weights for the global and local branches at timestep t. The weight
network MLPw is implemented as:

MLPw(t) = Linear2(LeakyReLU(Linear1(SinusoidalEmbedding(t)))) (7)

This design allows for complex weight computations, enabling nuanced adaptations of the global-
local feature balance across different timesteps. The use of LeakyReLU activation and multiple linear
layers provides the network with the capacity to learn non-linear relationships between the timestep
and the optimal feature balance.

4.3 COMBINED DENOISING PROCESS

The final denoising prediction is a weighted combination of the global and local branch outputs:

ϵθ(xt, t) = w1(t) · ϵglobal
θ (xt, t) + w2(t) · ϵlocal

θ (xup
t , t) (8)

where w1(t) and w2(t) are the components of w(t). This combination allows the model to leverage
both global structure and local details in its predictions, with the balance dynamically adjusted based
on the current timestep.

4.4 TRAINING PROCESS

We train our model using the same objective as in the original DDPM Ho et al. (2020):

L = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
(9)

where ϵ is the noise added during the forward process, and the expectation is taken over timesteps t,
initial samples x0, and noise ϵ. This objective encourages the model to accurately predict and remove
the noise at each timestep, while the adaptive weighting mechanism learns to balance global and
local features for optimal denoising.

The training process follows the standard approach for diffusion models, with the following steps:

1. Sample a batch of data points x0 ∼ pdata(x).

2. Sample timesteps t ∼ Uniform({1, . . . , T}).
3. Sample noise ϵ ∼ N (0, I).

4. Compute noisy samples xt using the forward process defined in Section 3.

5. Compute the loss L and update the model parameters using gradient descent.

Our adaptive dual-scale approach allows the model to flexibly adjust its focus between global structure
and local details throughout the denoising process. This is particularly beneficial in low-dimensional
spaces where each dimension carries significant information about the overall structure of the data.
By dynamically balancing these two scales, our method can better capture complex data distributions
and generate higher-quality samples compared to traditional single-scale approaches.
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Figure 2: Evolution of global and local feature weights across timesteps for different datasets. The
x-axis represents timesteps (from end to beginning of the diffusion process), while the y-axis shows
weight values. Each line represents the weight for global (solid) and local (dashed) features for a
specific dataset.

Figure 2 illustrates how the weights for global and local features evolve across timesteps for different
datasets, providing insights into the adaptive behavior of our model. This visualization helps us
understand how the model balances global structure and local details at various stages of the denoising
process for each dataset.

5 EXPERIMENTAL SETUP

We evaluate our adaptive dual-scale denoising approach on four 2D datasets: circle, dino, line, and
moons. These datasets, each consisting of 100,000 points, represent a range of low-dimensional data
distributions with varying complexity:

• Circle: A simple closed curve

• Dino: A complex shape with both smooth and sharp features

• Line: A linear structure

• Moons: Two interleaving crescent shapes

Our model architecture, implemented in PyTorch, consists of:

• Global and local branches: Multi-Layer Perceptrons (MLPs) with 3 hidden layers of 256
units each, using sinusoidal embeddings for input and time

• Upscaling operation: Learnable linear transformation from R2 to R4

• Weight network: 2-layer MLP with LeakyReLU activation

Training parameters:
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• Steps: 10,000

• Optimizer: Adam with learning rate 3× 10−4

• Batch size: 256

• Learning rate schedule: Cosine annealing

• Diffusion process: 100 timesteps with linear noise schedule

• Exponential Moving Average (EMA) of model parameters: Decay rate 0.995, updated every
10 steps

We evaluate our model using:

• Kullback-Leibler (KL) divergence: Estimated using k-nearest neighbor method

• Computational efficiency: Training time for 10,000 steps and inference time for 10,000
samples

• Visual inspection of generated samples

Our experiments compare:

1. Baseline: Single-scale diffusion model

2. Fixed Weighting: Dual-scale processing with fixed 0.5 weighting

3. Adaptive Weighting: Full model with learnable, timestep-conditioned weighting

4. Weight Evolution Analysis: Study of adaptive weight behavior

5. Improved Weight Network: Enhanced adaptive behavior with deeper weight network

All experiments use PyTorch 1.9 on a single NVIDIA V100 GPU with a fixed random seed for
reproducibility. Our implementation is publicly available.

6 RESULTS

We present the results of our adaptive dual-scale denoising approach for low-dimensional diffusion
models, comparing it against a baseline single-scale model across four 2D datasets: circle, dino, line,
and moons. Our experiments consist of five main runs: Baseline (Run 0), Dual-Scale Processing with
Fixed Weighting (Run 1), Adaptive Dual-Scale Processing (Run 2), Weight Evolution Analysis (Run
3), and Improved Weight Network (Run 5).

6.1 QUANTITATIVE ANALYSIS

Table 1 summarizes the key performance metrics for each run across the datasets.

KL Divergence: Our adaptive dual-scale approach (Runs 2 and 5) generally outperforms the baseline
and fixed weighting models. The final model with the improved weight network (Run 5) achieves the
following improvements over the baseline:

• Circle: 2.5% reduction (from 0.354 to 0.345)

• Dino: 12.8% reduction (from 0.989 to 0.862)

• Line: 5.0% reduction (from 0.161 to 0.153)

• Moons: 3.3% improvement (from 0.090 to 0.093)

Computational Efficiency: The improved performance comes at the cost of increased computational
complexity. Training times approximately doubled, from an average of 36.97 seconds for the baseline
to 75.19 seconds for the final model across all datasets. Inference times also increased, but to a lesser
extent.
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Table 1: Performance metrics for different experimental runs across datasets

Run Dataset KL Divergence Training Time (s) Inference Time (s)

Baseline

Circle 0.354 37.42 0.172
Dino 0.989 36.68 0.171
Line 0.161 37.15 0.160

Moons 0.090 36.61 0.168

Fixed Weighting

Circle 0.369 73.07 0.293
Dino 0.820 74.28 0.286
Line 0.172 76.55 0.275

Moons 0.100 74.56 0.272

Adaptive Weighting

Circle 0.347 89.83 0.302
Dino 0.871 88.43 0.290
Line 0.155 81.64 0.357

Moons 0.096 83.32 0.263

Weight Analysis

Circle 0.361 76.73 0.299
Dino 1.034 81.05 0.281
Line 0.148 86.87 0.294

Moons 0.100 82.37 0.279

Improved Weight Network

Circle 0.345 79.91 0.293
Dino 0.862 73.94 0.278
Line 0.153 72.15 0.274

Moons 0.093 74.75 0.265

6.2 QUALITATIVE ANALYSIS

Figure 1 provides a visual comparison of the generated samples across different runs and datasets.
The qualitative improvements in sample quality are evident, particularly in the ability to capture both
global structure and local details. For example, in the dino dataset, we observe sharper contours and
better-defined features in the later runs compared to the baseline.

6.3 WEIGHT EVOLUTION ANALYSIS

Figure 2 visualizes how the weights for global and local features evolve across timesteps for different
datasets. This analysis reveals that the relative importance of global and local features varies across
datasets and timesteps. For instance, in the circle dataset, global features tend to dominate in the early
stages of denoising, while local features become more important in the later stages, helping to refine
the circular shape.

6.4 ABLATION STUDY

Our experiments serve as an ablation study, demonstrating the impact of each component of our
method:

• Dual-scale processing with fixed weighting (Run 1) shows mixed results compared to the
baseline, indicating that simply processing at two scales is not sufficient for consistent
improvement.

• Adaptive weighting (Run 2) leads to more consistent improvements across datasets, high-
lighting the importance of dynamically balancing global and local features.

• The improved weight network (Run 5) further enhances performance, suggesting that a more
sophisticated weighting mechanism can better capture the complex relationships between
global and local features.
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6.5 LIMITATIONS

Despite the overall improvements, our method has some limitations:

• Increased computational cost may make it less suitable for applications with strict time
constraints.

• Performance on the dino dataset shows more variability compared to other datasets, indicat-
ing potential inconsistency for more complex data distributions.

• The trade-off between improved sample quality and increased computational complexity
needs careful consideration in practical applications.

6.6 HYPERPARAMETERS AND FAIRNESS CONSIDERATIONS

All experiments used consistent hyperparameters across runs: 10,000 training steps, Adam optimizer
with learning rate 3 × 10−4, batch size 256, and 100 diffusion timesteps. The consistency in
hyperparameters ensures fair comparisons between different runs. However, it’s worth noting that
these hyperparameters were not extensively tuned, and there may be room for further optimization.

In conclusion, our adaptive dual-scale denoising approach demonstrates promising results in im-
proving the quality of generated samples for low-dimensional diffusion models. The ability to
dynamically balance global and local features leads to consistent improvements in KL divergence
across multiple datasets, with visual improvements in sample quality. However, these improvements
come at the cost of increased computational complexity. Further research is needed to address the
limitations and improve the robustness of the adaptive weighting mechanism across a wider range of
data complexities.

7 CONCLUSIONS AND FUTURE WORK

This paper introduced an adaptive dual-scale denoising approach for low-dimensional diffusion
models, addressing the challenge of balancing global structure and local details in generated sam-
ples. Our method incorporates a novel architecture with two parallel branches and a learnable,
timestep-conditioned weighting mechanism to dynamically balance their contributions throughout
the denoising process.

Experiments on four 2D datasets demonstrated significant improvements in sample quality compared
to traditional single-scale approaches. We observed reductions in KL divergence across all datasets,
with the most substantial improvement of 12.8

The adaptive weighting mechanism proved effective in dynamically adjusting the focus between
global and local features across different datasets and denoising stages, as demonstrated in Figure 2.
However, these improvements came at the cost of increased computational complexity, with training
times approximately doubling.

Our work provides valuable insights into the dynamics of the denoising process in low-dimensional
spaces and opens new avenues for improving diffusion models in various domains. The principles
of adaptive dual-scale processing and dynamic feature balancing demonstrated in this study have
potential applications beyond low-dimensional data, possibly extending to more complex, higher-
dimensional domains.

Future work could explore:

1. Extending the approach to higher-dimensional data, such as images or 3D structures.
2. Investigating more sophisticated weighting mechanisms, possibly leveraging attention mech-

anisms or graph neural networks.
3. Reducing computational overhead through more efficient network architectures or adaptive

computation techniques.
4. Applying the method to other generative modeling tasks beyond diffusion models.
5. Conducting a more extensive theoretical analysis of the interplay between global and local

features in diffusion models.
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In conclusion, our adaptive dual-scale denoising approach represents a significant step forward
in improving the quality and fidelity of low-dimensional diffusion models. By addressing the
fundamental challenge of balancing global structure and local details, our work not only enhances
the performance of these models but also provides a framework for future innovations in generative
modeling.

REFERENCES

Shaojie Bai, V. Koltun, and J. Z. Kolter. Multiscale deep equilibrium models. ArXiv, abs/2006.08656,
2020.

Ali Hatamizadeh, Jiaming Song, Guilin Liu, Jan Kautz, and Arash Vahdat. Diffit: Diffusion vision
transformers for image generation. ArXiv, abs/2312.02139, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Jonathan Ho, Chitwan Saharia, William Chan, David J. Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. J. Mach. Learn. Res., 23:47:1–47:33,
2021.

Tero Karras, M. Aittala, Timo Aila, and S. Laine. Elucidating the design space of diffusion-based
generative models. ArXiv, abs/2206.00364, 2022a.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022b. URL
https://openreview.net/forum?id=k7FuTOWMOc7.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. ArXiv, abs/2209.15421, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1–39, 2023.

11

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://openreview.net/forum?id=k7FuTOWMOc7

	Introduction
	Related Work
	Multi-scale Approaches in Diffusion Models
	Adaptive Mechanisms in Generative Models
	Low-dimensional Diffusion Models

	Background
	Problem Setting

	Method
	Dual-Scale Architecture
	Adaptive Weighting Mechanism
	Combined Denoising Process
	Training Process

	Experimental Setup
	Results
	Quantitative Analysis
	Qualitative Analysis
	Weight Evolution Analysis
	Ablation Study
	Limitations
	Hyperparameters and Fairness Considerations

	Conclusions and Future Work

